159k views
0 votes
A.) x+7/x-1
B.) x+1/x+7
C.) x-1/x+7

A.) x+7/x-1 B.) x+1/x+7 C.) x-1/x+7-example-1
User IT Goldman
by
5.3k points

2 Answers

6 votes

Answer:

C)

Explanation:

When you have a*b/c*a, a crosses out, simplifying to b/c:

(x+1)(x-1)/

(x+1)(x+7)

When "crossing out", you are really just simplifying it to 1/1:

1*(x-1)/

1*(x+7)

Which is the same as:

(x-1)/(x+7)

Therefore, C is the correct answer

User TernaryOperator
by
5.8k points
3 votes

Answer:

C

Explanation:

If there is an expression such as:


(A*B)/(A*C)

we can cancel out A from top and bottom and that will leave us with
(B)/(C)

Note: Let A, B, C, be any algebraic expression

For the problem given, we can simply cut (x+1) from top and bottom by rules of algebra. So the remaining terms are:


((x-1))/((x+7))

This is option C

User Happydave
by
5.5k points