Answer:
∠ACB==50°
b=15.6 units
c=11.9 units
Explanation:
step 1
Find the measure of angle BCA
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
∠ABC+∠BAC+∠ACB=180°
substitute the given values
90°+40°+∠ACB=180°
∠ACB=180°-130°=50°
step 2
Find the measure of side b
Applying the law of sines
a/sin(∠BAC)=b/sin(∠ABC)
substitute the given values
10/sin(40°)=b/sin(90°)
b=10/sin(40°)
b=15.6 units
step 3
Find the measure of side c
Applying the law of sines
c/sin(∠ACB)=a/sin(∠BAC)
substitute the given values
c/sin(50°)=10/sin(40°)
c=[10/sin(40°)]*sin(50°)
c=11.9 units