Answer:
OPTION E:
![(2+√(14)i)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f9q8m2nyv9le43et2li264jf0vazin7wkg.png)
Explanation:
Given the Quadratic equation
, you can find the roots by applying the Quadratic formula. This is:
![x=(-b\±√(b^2-4ac) )/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r0wks1tt1il7bxuwf9xudkzvhtrqrsa5it.png)
In this case you can identify that:
![a=2\\b=-4\\c=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/myi4k109ayufxqulqcr1ifdtvt1t4j3xug.png)
Then you can substitute values into the Quadratic formula:
![x=(-(-4)\±√((-4)^2-4(2)(9)) )/(2(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wxwnwinhjqbjy7m7hvte8f628zzoyvgm1e.png)
![x=(4\±√((56) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b2nt85jhhkkwkupwbgrgwlel21sowioqkq.png)
Remember that
, then:
![x=(4\±2√(14)i)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yizizl7yxzvzlb0tsl9f47jhmvnev40w9d.png)
Simplifying, you get:
![x=(2(2\±i√(14)i))/(4)\\\\x=(2\±√(14)i)/(2)\\\\\\x_1=(2+√(14)i)/(2)\\\\x_2=(2-√(14)i)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ns4bimtgmwf3zqjpz443e1ef6jqlcgtj6i.png)