114k views
2 votes
Sinx = 1/2, cosy = sqrt2/2, and angle x and angle y are both in the first quadrant.

tan(x+y)=

A. -3.73
B. 1.53
C. 3.00
D. 3.73​

User Punund
by
5.6k points

2 Answers

1 vote

Answer:

D. 3.73

Explanation:

User ChuckB
by
5.3k points
6 votes

Answer:

Option D. 3.73​

Explanation:

we know that


tan(x+y)=(tan(x)+tan(y))/(1-tan(x)tan(y))

and


sin^(2)(\alpha)+cos^(2)(\alpha)=1

step 1

Find cos(X)

we have


sin(x)=(1)/(2)

we know that


sin^(2)(x)+cos^(2)(x)=1

substitute


((1)/(2))^(2)+cos^(2)(x)=1


cos^(2)(x)=1-(1)/(4)


cos^(2)(x)=(3)/(4)


cos(x)=(√(3))/(2)

step 2

Find tan(x)


tan(x)=sin(x)/cos(x)

substitute


tan(x)=1/√(3)

step 3

Find sin(y)

we have


cos(y)=(√(2))/(2)

we know that


sin^(2)(y)+cos^(2)(y)=1

substitute


sin^(2)(y)+((√(2))/(2))^(2)=1


sin^(2)(y)=1-(2)/(4)


sin^(2)(y)=(2)/(4)


sin(y)=(√(2))/(2)

step 4

Find tan(y)


tan(y)=sin(y)/cos(y)

substitute


tan(y)=1

step 5

Find tan(x+y)


tan(x+y)=(tan(x)+tan(y))/(1-tan(x)tan(y))

substitute


tan(x+y)=[1/√(3)+1}]/[{1-1/√(3)}]=3.73

User Hobo Joe
by
5.5k points