Answer:
![D_{\vec{u}}f(0,0,0)=(6)/(√(54))](https://img.qammunity.org/2020/formulas/mathematics/college/jk64szbnv4sq6x55ne0fsmpqau7sqhkti4.png)
Explanation:
We need to find the directional derivative of the function at the given point in the direction of the vector v.
,point (0, 0, 0) and
![v=<6, 3, -3>](https://img.qammunity.org/2020/formulas/mathematics/college/rfbrv4ipujrphqayz5hfg4r8s1upp0cfu3.png)
By Theorem: If f is a differentiable function of x , y and z , then f has a directional derivative for any unit vector
and
![D_{\overrightarrow{u}}f(x,y,z)=f_(x)(x,y,z)u_1+f_(y)(x,y,z)u_2+f_(z)(x,y,z)u_3](https://img.qammunity.org/2020/formulas/mathematics/college/yrmiiuhx4kwon04tufjf0bcmnmudp6qux7.png)
where
![\overrightarrow{u}=\frac{\overrightarrow{v}}](https://img.qammunity.org/2020/formulas/mathematics/college/vcwqnthzvw2mlmssncrwprwhpif3jdfbfs.png)
since,
![v=<6, 3, -3>](https://img.qammunity.org/2020/formulas/mathematics/college/rfbrv4ipujrphqayz5hfg4r8s1upp0cfu3.png)
then
![\overrightarrow{u}=\frac{\overrightarrow{v}}](https://img.qammunity.org/2020/formulas/mathematics/college/vcwqnthzvw2mlmssncrwprwhpif3jdfbfs.png)
![\overrightarrow{u}=< \frac{6}{\sqrt{6^(2)+3^(2)+(-3)^(2)}},\frac{3}{\sqrt{6^(2)+3^(2)+(-3)^(2)}},\frac{-3}{\sqrt{6^(2)+3^(2)+(-3)^(2)}} >](https://img.qammunity.org/2020/formulas/mathematics/college/j8zgmkupqsk6adooyib1b8v4w3hix0z6te.png)
![\overrightarrow{u}=< (6)/(√(54)),(3)/(√(54)),(-3)/(√(54)) >](https://img.qammunity.org/2020/formulas/mathematics/college/pk3cl1otomunmk6029nvffjgnca8ptgb72.png)
The partial derivatives are
![f_(y)(x,y,z)=xe^(y)+e^(z)](https://img.qammunity.org/2020/formulas/mathematics/college/8h1jf90pybxoeybepszt163tka0mcvk2eo.png)
![f_(z)(x,y,z)=ye^(z)+e^(x)](https://img.qammunity.org/2020/formulas/mathematics/college/jjbdzc0j8ocmhzr0vu0a2v8emko5xfmqg0.png)
Then the directional derivative is
![D_{\vec{u}}f(x,y,z)=(e^(y)+ze^(x))((6)/(√(54)))+(xe^(y)+e^(z))((3)/(√(54)))+(ye^(z)+e^(x))((-3)/(√(54)))](https://img.qammunity.org/2020/formulas/mathematics/college/l59ndy7dd9vsyqamtdpn6jneydekhwy2p6.png)
so, directional derivative at point (0,0,0)
![D_{\vec{u}}f(0,0,0)=(e^(0)+0e^(0))((6)/(√(54)))+(0e^(0)+e^(0))((3)/(√(54)))+(0e^(0)+e^(0))((-3)/(√(54)))](https://img.qammunity.org/2020/formulas/mathematics/college/xj172a7q6ge6xt4nwfbwtslw944bpfgn91.png)
![D_{\vec{u}}f(0,0,0)=(6)/(√(54))+(3)/(√(54))+(-3)/(√(54))](https://img.qammunity.org/2020/formulas/mathematics/college/ub1sc8o5sdxeqvjdqyi8s6e693qawig2ss.png)
![D_{\vec{u}}f(0,0,0)=(6+3-3)/(√(54))](https://img.qammunity.org/2020/formulas/mathematics/college/7y9wjie6tmqkuril6vknjg72nrhb4nmgro.png)
![D_{\vec{u}}f(0,0,0)=(6)/(√(54))](https://img.qammunity.org/2020/formulas/mathematics/college/jk64szbnv4sq6x55ne0fsmpqau7sqhkti4.png)