Answer:
![\large\boxed{C)\ \left\{\begin{array}{ccc}y=x\\\\y=(-x+10)/(x-4)\end{array}\right}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ux4f8qzt1w7miu95gv5gsla7s2apz3dot1.png)
Explanation:
We have the points
(-2 , -2) → x = -2 and y = -2 → x = y
(5, 5) → x = 5 and y = 5 → x = y
The equation of a line is
![y=x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ej2majjqavb3ekl29vf4wt62evok5ita1h.png)
The hyperbola has the vertical asymptote x = a and the horizontal asymptote y = -1.
Therefore the second equation is:
![y=(a)/(x-4)-1=(a)/(x-4)-(x-4)/(x-4)=(a-(x-4))/(x-4)=(a-x+4)/(x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fm1gec5youstiqe1iwxoe2c6v1xpha9waq.png)
Where a > 0.
The corresponding equation in the solutions to choose is:
![y=(-x+10)/(x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5n158cq056ffzwwoy3xb67pc7litc13aph.png)