105k views
4 votes
If θ is an angle in standard position that terminates in Quadrant III such that tanθ = 5/12, then sinθ/2 = _____.

User Threejeez
by
4.5k points

1 Answer

5 votes

Answer:


\displaystyle \sin{(\theta)/(2)} = (5√(26))/(26)\approx 0.196.

Explanation:


\displaystyle \theta\in \left(\pi, (3\pi)/(2)\right),

such that


\displaystyle (\theta)/(2) \in \left((\pi)/(2), (3\pi)/(4)\right).

As a result,


  • \displaystyle 0 < \sin{(\theta)/(2)} <1, and

  • \displaystyle -1 < \cos{(\theta)/(2)} <0.


\displaystyle \tan{(\theta)/(2)} = \frac{\sin{\displaystyle (\theta)/(2)}}{\displaystyle \cos{(\theta)/(2)}},

such that


  • \displaystyle \tan{(\theta)/(2)} <0.

Let


\displaystyle t = \tan{(\theta)/(2)}.


t < 0.

By the double angle identity for tangents.


\displaystyle \frac{\displaystyle 2\tan{(\theta)/(2)}}{1-\displaystyle \left(\tan{(\theta)/(2)}\right)^(2)} = tan(\theta).


\displaystyle (2t)/(1 - t^(2)) = (5)/(12).


24t = 5 - 5t^(2).

Solve this quadratic equation for
t:


  • \displaystyle t_1 = (1)/(5), and

  • t_2 = -5.

Discard
t_1 for it is not smaller than zero.

Let
\displaystyle s = \sin{(\theta)/(2)}.


0 < s <1.

By the definition of tangents:


\displaystyle \tan{(\theta)/(2)} = \frac{\displaystyle \sin{(\theta)/(2)}}{\displaystyle \cos{(\theta)/(2)}}.

Apply the Pythagorean Algorithm to express the cosine of
\displaystyle (\theta)/(2) in terms of
s. Note that
\displaystyle \cos{(\theta)/(2)} is expected to be smaller than zero.


\displaystyle \cos{(\theta)/(2)} = -\sqrt{1 - \left(\sin{(\theta)/(2)}\right)^(2)}= - \sqrt{1 - s^(2)}.

Solve for
s:


\displaystyle \frac{s}{- \sqrt{1 - s^(2)}} = -5.


s^(2) =25(1 - s^(2)).


\displaystyle s = \sqrt{(25)/(26)} = (5√(26))/(26).

Therefore


\displaystyle \sin{(\theta)/(2)} = (5√(26))/(26)\approx 0.196.

User Adarsh Sreeram
by
5.2k points