For this case we must solve the following equation:
![4 ^ {x + 1} = 21](https://img.qammunity.org/2020/formulas/mathematics/college/13m37zca9m0m3nmw3p12495vizwkg4o9sr.png)
We find Neperian logarithm on both sides:
![ln (4 ^ {x + 1}) = ln (21)](https://img.qammunity.org/2020/formulas/mathematics/college/r7t0mmj1hlwe71g1tkfgqq2im3fvpisf5l.png)
According to the rules of Neperian logarithm we have:
![(x + 1) ln (4) = ln (21)](https://img.qammunity.org/2020/formulas/mathematics/college/lhkjl8nlek8lmmuv31md08q18l2omao6i1.png)
We apply distributive property:
![xln (4) + ln (4) = ln (21)](https://img.qammunity.org/2020/formulas/mathematics/college/1r8g3bykdqxowc67r3h42i6694x1jefenm.png)
We subtract ln (4) on both sides:
![xln (4) = ln (21) -ln (4)](https://img.qammunity.org/2020/formulas/mathematics/college/oygpcdpjutq0p0tlnzpxv655hloqzdpx2q.png)
We divide between ln (4) on both sides:
![x = \frac {ln (21)} {ln (4)} - \frac {ln (4)} {ln (4)}\\x = \frac {ln (21)} {ln (4)} - 1\\x = 1,19615871](https://img.qammunity.org/2020/formulas/mathematics/college/y2kna6v13ljt9a7oeudtn52g3aoo6zpr0s.png)
Rounding:
![x = 1.1962](https://img.qammunity.org/2020/formulas/mathematics/college/2qiplkm4bg3z7s86x24kifkwtcqouweqhi.png)
Answer:
x = 1.1962