Answer: 0.5237
Explanation:
Mean :
![\mu=192\text{ days}](https://img.qammunity.org/2020/formulas/mathematics/college/pygfcrwx4gb2qdtpbypknsbqkh0kvkowv5.png)
Standard deviation :
![\sigma = 12\text{ days}](https://img.qammunity.org/2020/formulas/mathematics/college/vtgkddhj17pcvos0a9syq7azqbbi4c08x7.png)
The formula to calculate the z-score is given by :-
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
For x = 188 days ,
![z=(188-192)/(12)\approx-0.33](https://img.qammunity.org/2020/formulas/mathematics/college/ptj0omip38zeewsznejhefogwr81w67bo5.png)
For x = 107 miles per day ,
![z=(107-92)/(12)=1.25](https://img.qammunity.org/2020/formulas/mathematics/college/j5pur4urivuey25o390mhpbcrcvnj0sepv.png)
The P-value =
![P(-0.33<z<1.25)=P(z<1.25)-P(z<-0.33)](https://img.qammunity.org/2020/formulas/mathematics/college/12i69gz087uqrq871gkwg9hyhyktygq7um.png)
![0.8943502-0.3707=0.5236502\approx0.5237](https://img.qammunity.org/2020/formulas/mathematics/college/svml36c70dvezrmarktk7y8okobnfoggqv.png)
Hence, The probability that a randomly selected pregnancy lasts less than 188 days is approximately 0.5237.