Answer:
56 large boxes and 40 small boxes.
Explanation:
To solve this problem, we need to use the concept of multiples. By definition, a multiple of a number is that number multiplied by an integer. For instance, 3, 6, 9, 12 are multiples of 3. So let's do a chart and list the multiples of large and small boxes:
![\begin{array}{cccccccccc}Number\,of\,boxes & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\\Large & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72\\Small & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90\end{array}]()
From this, our goal is to select the number of small and large boxes such that the sum is 96 boxes of hamburger burns and the number of large boxes is greater than the number of small boxes. From the table, the correct solution is:
56 large boxes and 40 small boxes, and this meets our requirement, because 56 + 40 = 96 and 56 > 40