Final answer:
The electric flux through a spherical surface due to enclosed charges can be computed using Gauss's Law. The flux for a +6.60 x 10^-6 C charge is outward-directed, for a -1.30 x 10^-6 C charge it is inward-directed, and with both charges, the net flux is the sum of the individual fluxes.
Step-by-step explanation:
The student is asking about the concept of electric flux through a spherical surface that surrounds a collection of charges, which falls under the subject of Physics (specifically electromagnetism), and it is a high school- or introductory college-level question. According to Gauss's Law, the electric flux through a closed surface is directly proportional to the enclosed electric charge. This can be calculated using the formula Φ = q/ε0, where Φ is the electric flux, q is the electric charge, and ε0 is the permittivity of free space (approximately 8.85 x 10^-12 C2/N⋅m2).
For part (a), a spherical surface surrounding a single +6.60 × 10-6 C charge would result in an outward-directed electric flux Φ = +6.60 × 10^-6 C / 8.85 × 10^-12 C2/N⋅m2.
For part (b), a spherical surface surrounding a single -1.30 × 10-6 C charge would have an inward-directed electric flux Φ = -1.30 × 10^-6 C / 8.85 × 10^-12 C2/N⋅m2.
For part (c), when both charges are enclosed, their net flux through the surface is the sum of the individual fluxes. Therefore the net electric flux is Φ = (+6.60 × 10^-6 C - 1.30 × 10^-6 C) / 8.85 × 10^-12 C2/N⋅m2, which simplifies to the sum of the charges divided by the permittivity of free space.