Answer:
Last option
Explanation:
Given expression is:
![\sqrt{(128x^5y^6)/(2x^7y^5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8d4xe4xjx1tw7pcmr9rne576f0tkegiiub.png)
The terms can be simplified one by one
![=\sqrt{(64x^5y^6)/(x^7y^5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ixwkn1lznwu0qaj0zbwc6chnq3iunck7l.png)
As the larger power of x is in numerator, the smaller power will be brought to denominator
![=\sqrt{(64y^6)/(x^((7-5))y^5)}\\=\sqrt{(64y^6)/(x^(2)y^5)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1pc9czfm1dpogjc6tna5aijegmxdct6udk.png)
Similarly for y,
![=\sqrt{(64y^((6-5)))/(x^(2))}\\=\sqrt{(64y)/(x^(2))}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9xlicmo8qvwlahjh7qu5pnjluu6m7m497v.png)
Applying the radical
![\sqrt{(8^2*y)/(x^(2))}\\So\ the\ answer\ will\ be\\= (8√(y))/(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ovjm7exs6wgwp832ve3ua728wdgzwyslx4.png)
So, last option is the correct answer ..