Answer: The correct option is
(B) No. If the length is 20 and the width is 11, the perimeter is P = 40 + 22 = 62, not 64.
Step-by-step explanation: Given that the perimeter of a rectangle can be found using the equation P = 2L + 2W, where P is the perimeter, L is the length, and W is the width of the rectangle.
We are to check whether the perimeter of the rectangle can be 64 units when its width is 11 units and its length is 20 units.
According to the given information, we have
Length, L = 20 units, width, W = 11 units and Perimeter, P = 64 units.
We have
![P\\\\=2L+2W\\\\=2*20+2*11\\\\=40+22\\\\=62\\eq64.](https://img.qammunity.org/2020/formulas/mathematics/high-school/9stg2w0lhb82b2uxcfnhsgtm7wdqw74ej2.png)
Therefore, if length is 20 units and width is 11 units, then perimeter P = 40 + 22 = 62 units, not 64.
Thus, the answer is NO.
Thus, option (B) is CORRECT.