Answer:
(xy + x)and (xy + x)
(2x - 3) and (-3 + 2x)
(4y² + 25) and (25 + 4y²)
Explanation:
* Lets explain the meaning of the perfect square trinomial
- If a binomial multiply by itself, then the answer will be a perfect
square trinomial
- Example: if the binomial (ax + b) multiply by itself, then
(ax ± b)(ax ± b) = (ax)(ax) ± (ax)(b) ± (b)(ax) + (b)(b)
(ax + b)(ax + b) = (ax)² ± 2(axb) + (b)²
∵ (ax + b)(ax + b) = (ax + b)²
∴ (ax ± b)² = (ax)² ± 2(axb) + (b)² ⇒ perfect square trinomial
* From the example above the perfect square trinomial has 3 terms
# 1st term is the square the first term in the binomial
# 2nd term is twice the product of the two terms of the binomial
# 3rd term is the square of the second term of the binomial
* Lets solve the problem
- The product of (-x + 9)and (-x - 9)
∵ -x + 9 ≠ -x - 9
∴ The product of (-x + 9) and (-x - 9) is not a perfect square trinomial
- The product of (xy + x)and (xy + x)
∵ xy + x = xy + x
∴ (xy + x)(xy + x) = (xy + x)²
∵ (ax ± b)² = (ax)² ± 2(axb) + (b)² ⇒ perfect square trinomial
∴ The product of (xy + x) and (xy + x) is a perfect square trinomial
- The product of (2x - 3) and (-3 + 2x)
∵ (-3 + 2x) can be written as (2x - 3)
∴ 2x - 3 = -3 + 2x
∴ (2x - 3)(-3 + 2x) = (2x - 3)²
∵ (ax ± b)² = (ax)² ± 2(axb) + (b)² ⇒ perfect square trinomial
∴ The product of (2x - 3)(-3 + 2x) is a perfect square trinomial
- The product of (16 - x²) and (x² - 16)
∵ 16 - x² can be written as -x² + 16
- If we take -1 common factor from -x² + 16
∴ -x² + 16 = -(x² - 16)
∴ (-x² + 16)(x² - 16) = -(x² - 16)(x² - 16) = -(x² - 16)²
∵ (ax ± b)² = (ax)² ± 2(axb) + (b)² ⇒ perfect square trinomial
∵ -(x² - 16)² = -(x^4 - 32x² + 256) = -x^4 + 32x² - 256
∵ x^4 - 32x² + 256 is perfect square trinomial
∵ -x^4 + 32x² - 256 is not a perfect square trinomial
∴ The product of (16 - x²) and (x² - 16) is not a perfect square trinomial
- The product of (4y² + 25) and (25 + 4y²)
∵ 25 + 4y² can be written as 4y² + 25
∴ 4y² + 25 = 25 + 4y²
∴ (4y² + 25)(25 + 4y²) = (4y² + 25)²
∵ (ax ± b)² = (ax)² ± 2(axb) + (b)² ⇒ perfect square trinomial
∴ The product of (4y² + 25) and (25 + 4y²) is a perfect square trinomial