Answer:
Angular velocity of the disk is 8.552 rad/s
Step-by-step explanation:
It is given that,
Rotational kinetic energy, KE = 1280 J
The moment of inertia of the disk, I = 35 kg m²
We have to find the angular velocity of the disk. In rotational mechanics the kinetic energy of the disk is given by :
![KE=(1)/(2)I\omega^2](https://img.qammunity.org/2020/formulas/physics/college/djp3c8ttlf7zmyl66c1zkdh9ejuiob1ppt.png)
![\omega=\sqrt{(2KE)/(I)}](https://img.qammunity.org/2020/formulas/physics/college/k9lo2fa7yjohvh76r65r9yjl1t2u5wj6yx.png)
![\omega=\sqrt{(2* 1280\ J)/(35\ kgm^2)}](https://img.qammunity.org/2020/formulas/physics/college/6ccd62rgplyehq3kkpg7jxfsw8v8xagrt6.png)
![\omega=8.552\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/llbhucrx1bt69tofzny3pt328ks4eqv376.png)
Hence, the angular velocity of the disk is 8.552 rad/s.