Answer: 1527
Explanation:
Given: Mean :
![\mu = 3234\text{ grams}](https://img.qammunity.org/2020/formulas/mathematics/college/l943gc02ha17vl4fdjn71aof0w1ch7rejr.png)
Standard deviation :
![\sigma=871\text{ grams}/tex]</p><p>Sample size : [tex]n=1600](https://img.qammunity.org/2020/formulas/mathematics/college/4xqbfe3jdalcuszc6sjs2fu0digxswkd7n.png)
The formula to calculate the z score is given by :-
![z=(X-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2zes9uw2jt131irnna605jf296xozfrm84.png)
For X=1492
![z=(1492-3234)/(871)=-2](https://img.qammunity.org/2020/formulas/mathematics/college/gs96ya1me5fuy3ytqdogfycd57iy79mmne.png)
The p-value of z =
![P(z<-2)=0.0227501](https://img.qammunity.org/2020/formulas/mathematics/college/k5ytp3cgyupjpbp9a5xznwa8ay2hioirv5.png)
For X=4976
![z=(4976-3234)/(871)=2](https://img.qammunity.org/2020/formulas/mathematics/college/sfwc03ylzwcds3lvuny9jtv5sex168c88e.png)
The p-value of z =
![P(z<2)=0.9772498](https://img.qammunity.org/2020/formulas/mathematics/college/d2dyt910sd7v4csa9yxgu1gxrodzc5bko8.png)
Now, the probability of the newborns weighed between 1492 grams and 4976 grams is given by :-
![P(1492<X<4976)=P(X<4976)-P(X<1492)\\\\=P(z<2)-P(z<-2)\\\\=0.9772498-0.0227501\\\\=0.9544997](https://img.qammunity.org/2020/formulas/mathematics/college/5gp74tcnyhiy2s04uxba2z8rv3fcveeaea.png)
Now, the number newborns who weighed between 1492 grams and 4976 grams will be :-
![1600*0.9544997=1527.19952\approx1527](https://img.qammunity.org/2020/formulas/mathematics/college/ayhtngsoor0ls2y97yknx01c924vx95e1e.png)