Answer:
![y=2x^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6at33rgcoqlyytn5jaeufotyap9aiy7jmd.png)
Explanation:
we know that
The graph is a vertical parabola open upward
The vertex is the point (0,1)
The equation of a vertical parabola in vertex form is equal to
![y=a(x-h)^(2)+k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yubnz8asd396x2vyp3ylxb6kuv3e7wbgiy.png)
substitute the vertex in the equation
![y=a(x-0)^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shd7zmzxykt4oo8jev5khrmluqyocys4sc.png)
![y=a(x)^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wxr2mhlowxiq4e8naqz814r7ypnb767j8w.png)
Find the value of coefficient a
Observing the graph
For x=1, y=3
substitute in the equation
![3=a(1)^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/30x4bk91s4vazwt34b5mynccillkkj560j.png)
![a=3-1=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tvao359f1vy4ot77bczc69c6nsa88q5cmh.png)
The equation on the graph is equal to
![y=2x^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6at33rgcoqlyytn5jaeufotyap9aiy7jmd.png)