326,864 views
23 votes
23 votes
Let X be a discrete random variable with p.m.f given by

P(x) = 1/2x ' x = 1,2,3, ... (a) Find F(x) and use it to compute P(X > 4)
(b) Find P(2 < X <=5)

User MontyGoldy
by
2.2k points

1 Answer

10 votes
10 votes

It looks like the given PMF is


P(X=x) = \begin{cases}1/2^x &amp; \text{if }x\in\{1,2,3,\ldots\} \\ 0 &amp; \text{otherwise}\end{cases}

Then we have


P(X\le x) = \displaystyle \sum_(i=1)^x P(X=i) \\\\ ~~~~~~~~~~~~~~ = \sum_(i=1)^x \frac1{2^i} \\\\ ~~~~~~~~~~~~~~ = \frac12 + \frac1{2^2} + \frac1{2^3} + \cdots + \frac1{2^x}

Multiply both sides by 1/2.


\frac12 P(X\le x) = \frac1{2^2} + \frac1{2^3} + \frac1{2^4} + \cdots + \frac1{2^(x+1)}

Subtract this from
P(X\le x).


\frac12 P(X\le x) = \frac12 - \frac1{2^(x+1)} \\\\ P(X\le x) = 1 - \frac1{2^x}

So the CDF is


F(x) = \begin{cases} 0 &amp; \text{if } x < 1 \\\\ 1 - 1/2^x &amp; \text{if } x \ge 1 \end{cases}

(a) Using the CDF and probability of the complement,


P(X > 4) = 1 - P(X \le 4) \\\\ ~~~~~~~~~~~~~~= 1 - F(4) \\\\ ~~~~~~~~~~~~~~= 1 - \frac1{2^4} = \boxed{(15)/(16)}

(b) We can use the CDF again here.


P(2 < X \le 5) = P(X \le 5) - P(X \le 2) \\\\ ~~~~~~~~~~~~~~~~~~~~= F(5) - F(2) \\\\ ~~~~~~~~~~~~~~~~~~~~= \left(1 - \frac1{2^5}\right) - \left(1 - \frac1{2^2}\right) = \boxed{\frac7{32}}

User BradGreens
by
2.9k points