62.0k views
4 votes
Consider the line y=7x-3 fine the equation that pass through -5,6 of a perpendicular​

User Ywat
by
5.1k points

1 Answer

3 votes

Answer:


y=-(1)/(7)x+(37)/(7)

Explanation:

Your equation is in slope-intercept form, y = mx + b, where m is the slope and b is the y-intercept. Your line has a slope of 7. In order to find the line perpendicular to this line, we have to take the opposite reciprocal of the slope. The perpendicular slope to m = 7 is m = -1/7. Now we go through x = -5 and y = 6 to find the new equation.

6 = -1/7(-5) + b gives us

6 = 5/7 + b and

b = 37/7

Therefore, the equation of the line perpendicular to your original line is


y = -(1)/(7)x + (37)/(7)

User Paul Hristea
by
6.1k points