Answer:
![8,101\ bears](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rwrgt5eh5lblf80rq39ywggpjxvph91hgg.png)
Explanation:
we know that
In this problem we have a exponential function of the form
![y=a(b)^(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkgfqb7nvl6ibci3qji5d4eq7f89xi26ao.png)
where
x ----> is the number of years since 2009
y ----> is the population of bears
a ----> is the initial value
b ---> is the base
step 1
Find the value of a
For x=0 (year 2009)
y=1,570 bears
substitute
![1.570=a(b)^(0)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ibbopqs8knyewerx7w2uozqwjinq8hmiku.png)
![a=1.570\ bears](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wedrbb1qmrkeoq2b4qutqrxugfeefxeo3i.png)
so
![y=1.570(b)^(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gne3t5fo6jea5j958mpzufyxdn22hkk2rs.png)
step 2
Find the value of b
For x=1 (year 2010)
y=1,884 bears
substitute
![1,884=1.570(b)^(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qq7ajgxab5slferw293pcr0mcfic6b1b2q.png)
![b=1,884/1.570](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28r8jg7dkisejx166oe0s1g0dqq5x6nl2d.png)
![b=1.2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f2534s6ehcfrroatio1pwe5m0n7yw2hsev.png)
The exponential function is equal to
![y=1.570(1.2)^(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/afftj0quc87sg7m6ixic3srec8uwfz8i25.png)
step 3
How many bears will there be in 2018?
2018-2009=9 years
so
For x=9 years
substitute in the equation
![y=1.570(1.2)^(9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yhu9wu4t1n90apa4e7q5cb33e5jzwpwzrh.png)
![y=8,101\ bears](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ffdsiyvjz5l9uy3psh8qsjbtbd63s476ux.png)