Answer:
Part 1) The quadratic equation is
![x^(2)-5x-50=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/adxph9atxvdsqigc8tb5eqs6gcon4wqlxw.png)
Part 2) The length of rectangle is 10 in and the width is 5 in
Explanation:
Part 1)
Find the quadratic equation
Let
x -----> the length of rectangle
y ----> the width of rectangle
we know that
The area of rectangle is equal to
![A=xy](https://img.qammunity.org/2020/formulas/mathematics/middle-school/92fnf84e6el1b8awjzmjadlyo48pjjzxuy.png)
![A=50\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pxdf5x7c0dp2a9k3lvpl0xldjzxnuc4cub.png)
so
-----> equation A
![x=y+5](https://img.qammunity.org/2020/formulas/mathematics/high-school/oh2rra0xmlslbtg3m4cwv4doi8kpv2bagr.png)
-----> equation B
substitute equation B in equation A
![50=x(x-5)\\50=x^(2) -5x\\ x^(2)-5x-50=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v6naax0rmj5dix17nbgq5c33ki2442ew7x.png)
Part 2) Find the length of the rectangle
![x^(2)-5x-50=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/adxph9atxvdsqigc8tb5eqs6gcon4wqlxw.png)
Solve the quadratic equation by graphing
The solution is
![x=10\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8l5dexf44i59c1q07rkzhdddqs21vym6xl.png)
see the attached figure
Find the value of y
![y=10-5=5\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nnmaqftk8hpa8v168m95umtuz4hy08k5tw.png)
therefore
The length of rectangle is 10 in and the width is 5 in