Answer:
The moment of inertia of the wheel is 0.593 kg-m².
Step-by-step explanation:
Given that,
Force = 82.0 N
Radius r = 0.150 m
Angular speed = 12.8 rev/s
Time = 3.88 s
We need to calculate the torque
Using formula of torque
![\tau=F* r](https://img.qammunity.org/2020/formulas/physics/college/d83klysev6y2pvkinermh8x54hno8pftfk.png)
![\tau=82.0*0.150](https://img.qammunity.org/2020/formulas/physics/college/ienplqp04rfpx63ypfj23cdssohlc926en.png)
![\tau=12.3\ N-m](https://img.qammunity.org/2020/formulas/physics/college/kehd9kg8gtxoiild4y1hhgaf132n5n09u0.png)
Now, The angular acceleration
![(d\omega)/(dt)=(12.8*2\pi)/(3.88)](https://img.qammunity.org/2020/formulas/physics/college/1h4c7o9qe2mro3uud9ifsk6b09l8kvwhhp.png)
![(d\omega)/(dt)=20.73\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/drwsjsi85r7tetjr6kg4k6z0iao2xjs8ut.png)
We need to calculate the moment of inertia
Using relation between torque and moment of inertia
![\tau=I*(d\omega)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/rbhtl7vz8q35lpplt8b1fzxv2yyznotiaf.png)
![I=(I)/((d\omega)/(dt))](https://img.qammunity.org/2020/formulas/physics/college/ic5yp0vo350az6wfp3xm47ymvhec7lhhcl.png)
![I=(12.3)/(20.73)](https://img.qammunity.org/2020/formulas/physics/college/vknt90gc19fr8ifz3g9xnscv4wdus55br1.png)
![I= 0.593\ kg-m^2](https://img.qammunity.org/2020/formulas/physics/college/paaw2g1q2unhh7nto7fzw7jkhu5081xe3p.png)
Hence, The moment of inertia of the wheel is 0.593 kg-m².