199k views
8 votes
Given the coordinates, determine whether PQR & XYZ are congruent

P(5,-4), Q(-3, 7), R(0, 2), X(-2,-1), Y(9, 7), Z(3, 2)


PQ=

XY=

QR=

YZ=

PR=

XZ=


Are the triangles congruent? If yes, explain your reasoning and write a congruence statement.

1 Answer

5 votes

Answer:

The triangles are congruent

Explanation:

Given


P(5,-4), Q(-3, 7), R(0, 2), X(-2,-1), Y(9, 7), Z(3, 2)

Required

Determine if PQR = XYZ

To do this, we make use of distance formula.


D = √((x_2-x_1)^2+(y_2-y_1)^2)

For PQ:


(x_1,y_1) = (5,-4) and
(x_2,y_2) = (-3,7)

So:


PQ = √((-3-5)^2+(7-(-4))^2)


PQ = √((-8)^2+(7+4)^2)


PQ = √((-8)^2+(11)^2)


PQ = √(64+121)


PQ = √(185)

For XY:


(x_1,y_1) = (-2,-1)


(x_2,y_2) = (9,7)

So:


XY = √((9-(-2))^2+(7-(-1))^2)


XY = √((9+2)^2+(7+1)^2)


XY = √((11)^2+(8)^2)


XY = √(121+64)


XY = √(185)

For QR:


(x_1,y_1) = (-3,7) and
(x_2,y_2) = (0,2)

So:


QR = √((0-(-3))^2 + (2-7)^2)


QR = √((0+3)^2 + (-5)^2)


QR = √((3)^2 + 25)


QR = √(9 + 25)


QR = √(34)

For YZ:


(x_1,y_1) = (9,7) and
(x_2,y_2) = (3,2)

So:


YZ = √((3-9)^2+(2-7)^2)


YZ = √((-6)^2+(-5)^2)


YZ = √(36+25)


YZ = √(61)

For PR:


(x_1,y_1) = (5,-4) and
(x_2,y_2) = (0,2)

So:


PR = √((0-5)^2+(2-(-4))^2)


PR = √((-5)^2+(2+4)^2)


PR = √((-5)^2+(6)^2)


PR = √(25+36)


PR = √(61)

For XZ:


(x_1,y_1) = (-2,-1) and
(x_2,y_2) = (3,2)

So:


XZ = √((3-(-2))^2+(2-(-1))^2)


XZ = √((3+2)^2+(2+1)^2)


XZ = √(5^2+3^2)


XZ = √(34)

From the calculations above:


PQ = XY = \sqrt{185


QR = XZ = \sqrt{34


PR = YZ = \sqrt{61

Hence, the triangles are congruent base on SSS (Sides- Sides-Sides)

User Thewayup
by
3.6k points