76.2k views
0 votes
Rationalize the denominator- 12x/√x-10

User Ollieread
by
5.1k points

1 Answer

3 votes

ANSWER


( - 12x √(x) - 120x)/( x - 100)

Step-by-step explanation

The given function is


( - 12x)/( √(x) - 10 )

In the denominator we have


√(x) - 10

The conjugate of this surd is


√(x) + 10

To rationalize this function, we multiply both the numerator and the denominator by the conjugate surd.


( - 12x (√(x) + 10))/( (√(x) - 10)(√(x) + 1))

We apply the identity


(a + b)(a - b) = {a}^(2) - {b}^(2)

in the denominator.

This implies that,


\frac{ - 12x (√(x) + 10)}{ (√(x))^(2) - {10}^(2) }


( - 12x √(x) - 120x)/( x - 100)

User Joalcego
by
5.2k points