ANSWER
![( - 12x √(x) - 120x)/( x - 100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uc6riki35cz82drng0nakr5ndc5stxq7tz.png)
Step-by-step explanation
The given function is
![( - 12x)/( √(x) - 10 )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1qorcc29blu1iaken4f1kj55h4te6kskd5.png)
In the denominator we have
![√(x) - 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/if8w15bp4jjbvb4n115kd1rzscq1lz7r2j.png)
The conjugate of this surd is
![√(x) + 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7a8ugsmxfcv4tzv0mpoq3kv5gdt1kcsmeh.png)
To rationalize this function, we multiply both the numerator and the denominator by the conjugate surd.
![( - 12x (√(x) + 10))/( (√(x) - 10)(√(x) + 1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4iueac4wpoqt2usiwe2056pft9u8srq1fn.png)
We apply the identity
![(a + b)(a - b) = {a}^(2) - {b}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/to16oxvb1x61pjv3s6cueq8gwyssnbbk9h.png)
in the denominator.
This implies that,
![\frac{ - 12x (√(x) + 10)}{ (√(x))^(2) - {10}^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i3iqo1wg15g0oc57qt0l0pzkcks5jtk6ty.png)
![( - 12x √(x) - 120x)/( x - 100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uc6riki35cz82drng0nakr5ndc5stxq7tz.png)