Answer:
The solution is
![y(t)=e^(-t)(\cos 32t + ((5)/(8)) \sin 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/i7sdy9qqfgciqbenuo5wxiu7lyltcwo3la.png)
Explanation:
We need to find the solution of
with
condition
This is a homogeneous equation with characteristic polynomial
using quadratic formula
![r=-1 \pm 32i](https://img.qammunity.org/2020/formulas/mathematics/college/4vzw6w8qd7edkdlhj00w03o9ccx5114c7q.png)
The general solution for eigen value
is
![y(t)=e^(at)(A \cos bt + B \sin bt)](https://img.qammunity.org/2020/formulas/mathematics/college/ma39jo9wjozxix0kp6yrf1pd08i6r9t8r7.png)
![y(t)=e^(-t)(A \cos 32t + B \sin 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/hxuujl9hs4xy9rxrqwdkzh48lmcrx8dzgy.png)
Differentiate above with respect to 't'
![y'(t)=-e^(-t)(A \cos 32t + B \sin 32t) + e^(-t)(-32A \sin 32t + 32B \cos 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/ho137nfvcw9ano32mou2rw7wb984va35g7.png)
Since, y(0)=3
![y(0)=e^(0)(A \cos(0) + B \sin(0))](https://img.qammunity.org/2020/formulas/mathematics/college/qzbksxx10itwymzmm4kuuxexri83qvueuc.png)
![3=(A \cos(0) +0)](https://img.qammunity.org/2020/formulas/mathematics/college/oei2lzwrsrqlepr5mbxv6k7xof8a1gij52.png)
so, A=1
Since, y'(0)=17
![y'(0)=-e^(0)(3 \cos(0) + B \sin(0)) + e^(0)(-32(3) \sin(0) + 32B \cos (0))](https://img.qammunity.org/2020/formulas/mathematics/college/45u5b8fs3o59py3dlyoeoq7uj5ic2dj9zc.png)
![17=-(3 \cos(0)) + (0 + 32B \cos (0))](https://img.qammunity.org/2020/formulas/mathematics/college/170zztw6hk2v2uvlw928w26r29s2qf0u4f.png)
![17=-3 + 32B](https://img.qammunity.org/2020/formulas/mathematics/college/1z8xmy43ghkbjcedmjlyr7l885hty1qoj6.png)
add both the sides by 3,
![17+3 = 32B](https://img.qammunity.org/2020/formulas/mathematics/college/bhtos4ntm6bufmdqgtf2beslhfucc008y4.png)
![20= 32B](https://img.qammunity.org/2020/formulas/mathematics/college/gkj1ga7hoy1brt37jokx6sgzniz20r9nug.png)
divide both the sides, by 32,
![(20)/(32)= B](https://img.qammunity.org/2020/formulas/mathematics/college/j0qo58xnu0xkiqszu1zi12s0ia7eoamv99.png)
![(5)/(8)= B](https://img.qammunity.org/2020/formulas/mathematics/college/g9by9zbuiqcl9kzs1tpumkdy7kbfqy8dni.png)
Put the value of constants in
![y(t)=e^(-t)(A \cos 32t + B \sin 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/hxuujl9hs4xy9rxrqwdkzh48lmcrx8dzgy.png)
![y(t)=e^(-t)((1) \cos 32t + ((5)/(8)) \sin 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/nt0ykqkji2t85wprp4mh0hg9gwhy4j0d08.png)
Therefore, the solution is
![y(t)=e^(-t)(\cos 32t + ((5)/(8)) \sin 32t)](https://img.qammunity.org/2020/formulas/mathematics/college/i7sdy9qqfgciqbenuo5wxiu7lyltcwo3la.png)