Answer:
The area under the curve y=f(x) on [a,b] is
square units.
Explanation:
The given function is
![f(x)=\tan(3x)](https://img.qammunity.org/2020/formulas/mathematics/college/in5hagpwzf4jo3thv0bzuoojyromt3ermz.png)
where a=0 and b=pi/12.
The area under the curve y=f(x) on [a,b] is defined as
![Area=\int_(a)^(b)f(x)dx](https://img.qammunity.org/2020/formulas/mathematics/college/fnvjnaores9gqstupvt0wslp7jyvrgve2d.png)
![Area=\int_(0)^{(\pi)/(12)}\tan (3x)dx](https://img.qammunity.org/2020/formulas/mathematics/college/79ll5zkdb9yzwyvo27y29bplbz6p9n9z7h.png)
![Area=\int_(0)^{(\pi)/(12)}(\sin (3x))/(\cos (3x))dx](https://img.qammunity.org/2020/formulas/mathematics/college/zspw6v48lkttjmw9kmqmy2csr2l1l28i0z.png)
Substitute cos (3x)=t, so
![-3\sin (3x)dx=dt](https://img.qammunity.org/2020/formulas/mathematics/college/70gourbk48k9fjevbncwqb7ip4wkgsvctv.png)
![\sin (3x)dx=-(1)/(3)dt](https://img.qammunity.org/2020/formulas/mathematics/college/jz340l898dbb70le539bls850rmua33d0u.png)
![a=\cos (3(0))=1](https://img.qammunity.org/2020/formulas/mathematics/college/c34uijw8w2mblq80ran4nn1a5lzhxf76e8.png)
![b=\cos (3((\pi)/(12)))=(1)/(√(2))](https://img.qammunity.org/2020/formulas/mathematics/college/y408ea5fhmojc1dck0hpr2z1h2qmpk6smo.png)
![Area=-(1)/(3)\int_(1)^{(1)/(√(2))}(1)/(t)dt](https://img.qammunity.org/2020/formulas/mathematics/college/jpogkcjwoo2n0d2o1ueavbb50ixnks9ke4.png)
![Area=-(1)/(3)[\ln t]_(1)^{(1)/(√(2))](https://img.qammunity.org/2020/formulas/mathematics/college/yuitkvrvkesx0ahy2m4y1clmrruvk8rquz.png)
![Area=-(1)/(3)(\ln (1)/(√(2))-\ln (1))](https://img.qammunity.org/2020/formulas/mathematics/college/s8beiwxaeaznyi5xml4b0ew30fsqej3pzx.png)
![Area=-(1)/(3)(\ln 1-\ln √(2)-0)](https://img.qammunity.org/2020/formulas/mathematics/college/ndvfx7rghwhbai216q69pk0jqs2tp78qdu.png)
![Area=-(1)/(3)(-\ln 2^{(1)/(2)})](https://img.qammunity.org/2020/formulas/mathematics/college/636ol3gqwpiwkbrdlif5gxnm9e4vahbt8g.png)
![Area=-(1)/(3)(-(1)/(2)\ln 2)](https://img.qammunity.org/2020/formulas/mathematics/college/vdtj0f1gzz4oj50jzfi5a2giskn0ch349j.png)
![Area=-(1)/(6)\ln 2](https://img.qammunity.org/2020/formulas/mathematics/college/gxnuhr615m3x9k6xbb1g4unheeb3ai4dq2.png)
Therefore the area under the curve y=f(x) on [a,b] is
square units.