Answer:
D. |x − 78| ≤ 20
Explanation:
Given,
The monthly charges for a basic cable plan = $ 78,
Also, it could differ by as much as $20,
So, the maximum charges = $(78 + 20) ,
And, the minimum charges = $(78 - 20),
Let x represents the monthly charges ( in dollars ),
78 - 20 ≤ x ≤ 78 + 20
⇒ 78 - 20 ≤ x and x ≤ 78 + 20
⇒ -20 ≤ x -78 and x-78 ≤ 20
⇒ 20 ≥ -(x-78) and x-78 ≤ 20 ( ∵ a > b ⇒ -a < -b )
⇒ |x-78| ≤ 20
Which is the required absolute value inequality to determine the range of basic cable plan costs,
Option 'D' is correct.