172k views
3 votes
Find the degree 3 Taylor polynomial P3(x) of function f(x)=(-3x+15)^(3/2) at a=2

1 Answer

4 votes

Take up to the third-order derivative:


f(x)=(-3x+15)^(3/2)


f'(x)=\frac32(-3x+15)^(1/2)(-3)=-\frac92(-3x+15)^(1/2)


f''(x)=-\frac94(-3x+15)^(-1/2)(-3)=\frac{27}4(-3x+15)^(-1/2)


f'''(x)=-\frac{27}8(-3x+15)^(-3/2)(-3)=\frac{81}8(-3x+15)^(-3/2)

Evaluate each derivative at
x=a=2:


f(2)=9^(3/2)=27


f'(2)=-\frac929^(1/2)=-\frac{27}2


f''(2)=\frac{27}4\frac1{9^(1/2)}=\frac94


f'''(2)=\frac{81}8\frac1{9^(3/2)}=\frac38

Then the Taylor polynomial is


P_3(x)=f(2)+f'(2)(x-2)+\frac{f''(2)}2(x-2)^2+\frac{f'''(2)}6(x-2)^3


P_3(x)=27-\frac{27}2(x-2)+\frac98(x-2)^2+\frac1{16}(x-2)^3

User Annapoorni D
by
5.2k points