The particle has constant acceleration according to
![\vec a(t)=2\,\vec\imath-4\,\vec\jmath-2\,\vec k](https://img.qammunity.org/2020/formulas/physics/college/9nofa55jrqniixfov2fgrl69ryenz53zjy.png)
Its velocity at time
is
![\displaystyle\vec v(t)=\vec v(0)+\int_0^t\vec a(u)\,\mathrm du](https://img.qammunity.org/2020/formulas/physics/college/db71vdp22nw1u4g12d2gv1bz604amqlznp.png)
![\vec v(t)=\vec v(0)+(2\,\vec\imath-4\,\vec\jmath-2\,\vec k)t](https://img.qammunity.org/2020/formulas/physics/college/2rlfambf6uqo135s7j9tkaqjw0rrd7tf4j.png)
![\vec v(t)=(v_(0x)+2t)\,\vec\imath+(v_(0y)-4t)\,\vec\jmath+(v_(0z)-2t)\,\vec k](https://img.qammunity.org/2020/formulas/physics/college/yjpvdzjb07v7b0nrtfxtqrzu9tjz18r74c.png)
Then the particle has position at time
according to
![\displaystyle\vec r(t)=\vec r(0)+\int_0^t\vec v(u)\,\mathrm du](https://img.qammunity.org/2020/formulas/physics/college/dfw0g3h083wt4pyzxp5d3heaj00pd6ite9.png)
![\vec r(t)=(3+v_(0x)t+t^2)\,\vec\imath+(6+v_(0y)t-2t^2)\,\vec\jmath+(9+v_(0z)t-t^2)\,\vec k](https://img.qammunity.org/2020/formulas/physics/college/bqsi2vswzwpunfq02ler5ewhblapry9prs.png)
At at the point (3, 6, 9), i.e. when
, it has speed 8, so that
![\|\vec v(0)\|=8\iff{v_(0x)}^2+{v_(0y)}^2+{v_(0z)}^2=64](https://img.qammunity.org/2020/formulas/physics/college/u7kc9r7ivhu3i01ws4smm6nfhhcu52xn5n.png)
We know that at some time
, the particle is at the point (5, 2, 7), which tells us
![\begin{cases}3+v_(0x)T+T^2=5\\6+v_(0y)T-2T^2=2\\9+v_(0z)T-T^2=7\end{cases}\implies\begin{cases}v_(0x)=\frac{2-T^2}T\\\\v_(0y)=\frac{2T^2-4}T\\\\v_(0z)=\frac{T^2-2}T\end{cases}](https://img.qammunity.org/2020/formulas/physics/college/oq9tp54crbgcc5i4sub7hzb4ah654ullsh.png)
and in particular we see that
![v_(0y)=-2v_(0x)](https://img.qammunity.org/2020/formulas/physics/college/s55s3p2x709bj0nevnevky3u9i1ec3pfr6.png)
and
![v_(0z)=-v_(0x)](https://img.qammunity.org/2020/formulas/physics/college/8112kfs0rp94yahwr85ztp319ocx3ojgkr.png)
Then
![{v_(0x)}^2+(-2v_(0x))^2+(-v_(0x))^2=6{v_(0x)}^2=64\implies v_(0x)=\pm\frac{4\sqrt6}3](https://img.qammunity.org/2020/formulas/physics/college/t6ipipnhf8r2i3x85jv4jb4whyumv8v5ib.png)
![\implies v_(0y)=\mp\frac{8\sqrt6}3](https://img.qammunity.org/2020/formulas/physics/college/vdb6ecj4iemvh7u0hpbbnr9vhxw72326pv.png)
![\implies v_(0z)=\mp\frac{4\sqrt6}3](https://img.qammunity.org/2020/formulas/physics/college/386jk86dsp9fn9w5xxphm0wgzv0omnwbjp.png)
That is, there are two possible initial velocities for which the particle can travel between (3, 6, 9) and (5, 2, 7) with the given acceleration vector and given that it starts with a speed of 8. Then there are two possible solutions for its position vector; one of them is
![\vec r(t)=\left(3+\frac{4\sqrt6}3t+t^2\right)\,\vec\imath+\left(6-\frac{8\sqrt6}3t-2t^2\right)\,\vec\jmath+\left(9-\frac{4\sqrt6}3t-t^2\right)\,\vec k](https://img.qammunity.org/2020/formulas/physics/college/rs5t3aek68xwamqbqvaofewdu2e0fn6kvd.png)