Answer:
![a=(2S -2v_ot-2s_o)/(t^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9sigwq1kh2ncinckenyebmqocw788c6m33.png)
Explanation:
We have the equation of the position of the object
![S = (1)/(2)at ^2 + v_ot+s_o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sdpgkymq4nhfj34bgkt2tz3lzokdgjx6ge.png)
We need to solve the equation for the variable a
![S = (1)/(2)at ^2 + v_ot+s_o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sdpgkymq4nhfj34bgkt2tz3lzokdgjx6ge.png)
Subtract
and
on both sides of the equality
![S -v_ot-s_o = (1)/(2)at ^2 + v_ot+s_o - v_ot- s_o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/10jd1ja9qmyp0xeg3hbleup2hdexo4ljad.png)
![S -v_ot-s_o = (1)/(2)at ^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e4x6yr5sq3saxkzpbcs3ipb4x750uqme3o.png)
multiply by 2 on both sides of equality
![2S -2v_ot-2s_o = 2*(1)/(2)at ^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gpgybly6aeafp56af8j7o1ynta77aru2uz.png)
![2S -2v_ot-2s_o =at ^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hqxve2o7bkrpch9d5fa49050s8jezt7vil.png)
Divide between
on both sides of the equation
![(2S -2v_ot-2s_o)/(t^2) =a(t^2)/(t^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zghzow0xpgctno32jrifl4gu5ydvl1zfxc.png)
Finally
![a=(2S -2v_ot-2s_o)/(t^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9sigwq1kh2ncinckenyebmqocw788c6m33.png)