130k views
2 votes
Given the position vector of the particle

r(t)=(t+1)i+(t^2−1)j+2t k, find the particle's velocity and acceleration vectors at t=1

User Lokiare
by
7.7k points

1 Answer

2 votes

With position vector


\vec r(t)=(t+1)\,\vec\imath+(t^2-1)\,\vec\jmath+2t\,vec k

the particle then has velocity


\vec v(t)=(\mathrm d\vec r(t))/(\mathrm dt)=\vec\imath+2t\,\vec\jmath+2\,vec k

and acceleration


\vec a(t)=(\mathrm d\vec v(t))/(\mathrm dt)=(\mathrm d^2\vec r(t))/(\mathrm dt^2)=2\,\vec\jmath

Then
t=1, then particle's velocity and acceleration are, respectively,


\vec v=\vec\imath+2\vec\jmath+2\,\vec k

and


\vec a=2\,\vec\jmath

User Teneshia
by
8.7k points