Answer with explanation:
Using Sine Rule for Congruence of Triangles
![\Rightarrow(a)/(\ SinA)=(b)/(\ Sin B)=(c)/(\ Sin C)\\\\\Rightarrow(15)/(\ Sin29^(\circ))=(20)/(\ Sin B)\\\\\Rightarrow(15)/(0.49)=(20)/(\ Sin B)\\\\\Rightarrow \ SinB=(20 * 0.49)/(15)\\\\\Rightarrow \ SinB=(9.8)/(15)\\\\\Rightarrow \ SinB=0.65\\\\B=41^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/se7l2c9zrn1rpfhcqmqslo82r3odm5qbwb.png)
Using Angle Sum Property of Triangle
⇒∠A+∠B+∠C=180°
⇒29°+41°+∠C=180°
⇒∠C=180°-70°
⇒∠C=110°
→Again Using Sine Rule
![\Rightarrow (b)/(\ Sin B)=(c)/(\ Sin C)\\\\\Rightarrow (20)/(\ Sin 41^(\circ))=(c)/(\ Sin 110^(\circ))\\\\\Rightarrow (20)/(0.65)=(c)/(0.94)\\\\\Rightarrow (20 * 0.94)/(0.65)=c\\\\\Rightarrow c=(18.8)/(0.65)\\\\\Rightarrow c=28.92](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dm6h7y6uj2va7lsedqumqztz5a6dgdtyv2.png)
Length of third Side =28.92 unit
So,Perimeter of Triangle
=Sum of sides of triangle
=a +b +c
=15 + 20 +28.92
= 63.92 unit