Answer:
The coordinates of triangle A'B'C' are A' (-1 , 1) , B' (2 , 0) , C' (1 , 2)
Explanation:
* Lets revise some transformation
- If point (x , y) reflected across the x-axis
∴ Its image is (x , -y)
- If point (x , y) reflected across the y-axis
∴ Its image is (-x , y)
- If point (x , y) reflected across the line y = x
∴ Its image is (y , x)
- If point (x , y) reflected across the line y = -x
∴ Its image is (-y , -x)
* Lets solve the problem
- ABC is a triangle, where A = (1 , -1) , B = (0 , 2) , C = (2 , 1)
- The Δ ABC reflected over the line y = x to form ΔA'B'C'
∵ The image of the point (x , y) after reflected across the line y = x
is (y , x)
∴ We will switch the coordinates of each point in Δ ABC to find the
coordinates of Δ A'B'C'
# Vertex A
∵ A = (1 , -1) ⇒ x = 1 , y = -1
∴ The x-coordinate of the image is -1
∴ The y-coordinate of the image is 1
∴ A' = (-1 , 1)
# Vertex B
∵ B = (0 , 2) ⇒ x = 0 , y = 2
∴ The x-coordinate of the image is 2
∴ The y-coordinate of the image is 0
∴ B' = (2 , 0)
# vertex C
∵ C = (2 , 1) ⇒ x = 2 , y = 1
∴ The x-coordinate of the image is 1
∴ The y-coordinate of the image is 2
∴ C' = (1 , 2)
* The coordinates of triangle A'B'C' are A' (-1 , 1) , B' (2 , 0) , C' (1 , 2)