Answer:
Equation of tangent is
![y-2√(3)x=2-2(\pi)/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/college/kk7bql5p7dj2uve75ja48ohaci447xhazq.png)
Explanation:
Given:
Equation of curve, y = sec x
Passing through point =
![((\pi)/(3),2)](https://img.qammunity.org/2020/formulas/mathematics/college/gfn2h9ayck7t1agbeq9t9mtbnokswbvau4.png)
We need to find Equation of tangent to the given curve and at the given point.
First we find the slope of the tangent by differentiating the given curve.
As we know that slope of the tangent, m =
![\frac{\mathrm{d}y}{\mathrm{d} x}](https://img.qammunity.org/2020/formulas/mathematics/college/gkfwfa6xa01ws2tgysv14gz8gkh8o79piq.png)
So, consider
y = sec x
![\frac{\mathrm{d}y}{\mathrm{d} x}=\frac{\mathrm{d}(sec\,x)}{\mathrm{d} x}](https://img.qammunity.org/2020/formulas/mathematics/college/xlctt20i06267411y75pas28fn0vf5ddod.png)
![\frac{\mathrm{d}y}{\mathrm{d} x}=sec\,x\:tan\,x](https://img.qammunity.org/2020/formulas/mathematics/college/r6htzorulmxzgap3xx0laj254g5myoxjhx.png)
Now we find value of slope at given point,
put x =
in above derivate
we get
![\frac{\mathrm{d}y}{\mathrm{d} x}=sec\,(\pi)/(3)\:tan\,{\pi}{3}=2√(3)](https://img.qammunity.org/2020/formulas/mathematics/college/qe6a4r34km7nw4q3lg85uc6bwn83spm0dc.png)
Now using Slope point form, we have
Equation of tangent
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
![y-2=2√(3)(x-(\pi)/(3))](https://img.qammunity.org/2020/formulas/mathematics/college/y7zfghs99ednk88mrxl0kouhlvufkkahr8.png)
![y=2√(3)x-2√(3)(\pi)/(3)+2](https://img.qammunity.org/2020/formulas/mathematics/college/aalwclc21nrmosg26irh7qh7v0a7u9awnu.png)
![y-2√(3)x=2-2(\pi)/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/college/kk7bql5p7dj2uve75ja48ohaci447xhazq.png)
Therefore, Equation of tangent is
![y-2√(3)x=2-2(\pi)/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/college/kk7bql5p7dj2uve75ja48ohaci447xhazq.png)