160k views
2 votes
The coordinates G(7,3), H(9, 0), (5, -1) form what type of polygon?

an obtuse triangle
an acute triangle
O an equilateral triangle
a right triangle

2 Answers

2 votes

Answer:

ACUTE !!!!!!!!

Explanation:

User Michael Hubeny
by
5.2k points
5 votes

Answer:

Is an acute triangle

Explanation:

we know that

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

we have

G(7,3), H(9, 0), I(5, -1)

step 1

Find the distance GH

substitute in the formula


d=\sqrt{(0-3)^(2)+(9-7)^(2)}


d=\sqrt{(-3)^(2)+(2)^(2)}


GH=√(13)\ units

step 2

Find the distance IH

substitute in the formula


d=\sqrt{(0+1)^(2)+(9-5)^(2)}


d=\sqrt{(1)^(2)+(4)^(2)}


IH=√(17)\ units

step 3

Find the distance GI

substitute in the formula


d=\sqrt{(-1-3)^(2)+(5-7)^(2)}


d=\sqrt{(-4)^(2)+(-2)^(2)}


GI=√(20)\ units

step 4

Verify what type of triangle is the polygon

we know that

If applying the Pythagoras Theorem


c^(2)=a^(2)+b^(2) ----> is a right triangle


c^(2)> a^(2)+b^(2) ----> is an obtuse triangle


c^(2)< a^(2)+b^(2) ----> is an acute triangle

where

c is the greater side

we have


c=√(20)\ units


a=√(17)\ units


b=√(13)\ units

substitute


c^(2)= (√(20))^(2)=20


a^(2)+b^(2)=(√(17))^(2)+(√(13))^(2)=30

therefore


c^(2)< a^(2)+b^(2)

Is an acute triangle

User Geralde
by
5.3k points