![\displaystyle\int(4x^2-6)/((x+5)(x-2)(3x-1))\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/14gy4w8czdck48obxs733kg1ny7h4jt89g.png)
You have a rational expression whose numerator's degree is smaller than the denominator's. This tells you you should consider a partial fraction decomposition. We want to rewrite the integrand in the form
![(4x^2-6)/((x+5)(x-2)(3x-1))=\frac a{x+5}+\frac b{x-2}+\frac c{3x-1}](https://img.qammunity.org/2020/formulas/mathematics/college/d19aogzdu32yukqfyokcve17qaqtezlqbk.png)
![\implies4x^2-6=a(x-2)(3x-1)+b(x+5)(3x-1)+c(x+5)(x-2)](https://img.qammunity.org/2020/formulas/mathematics/college/mo52jm0y5mai2909zymtk3nfvd87px18jw.png)
You can use the "cover-up" method here to easily solve for
. It involves fixing a value of
to make 2 of the 3 terms on the right side disappear and leaving a simple algebraic equation to solve for the remaining one.
- If
, then
![94=112a\implies a=(47)/(56)](https://img.qammunity.org/2020/formulas/mathematics/college/no3b09wq3627r6wfgzogbrvjlxz3ib8mgs.png)
- If
, then
![10=35b\implies b=\frac27](https://img.qammunity.org/2020/formulas/mathematics/college/bq1u92mdmublun6rkor5i28kajyg4yyvzp.png)
- If
, then
![-\frac{50}9=-\frac{80}9c\implies c=\frac58](https://img.qammunity.org/2020/formulas/mathematics/college/ll67qk32586l0c7o7e6ev4e1i9jd1u6qob.png)
So the integral we want to compute is the same as
![\displaystyle(47)/(56)\int(\mathrm dx)/(x+5)+(10)/(35)\int(\mathrm dx)/(x-2)+\frac58\int(\mathrm dx)/(3x-1)](https://img.qammunity.org/2020/formulas/mathematics/college/xskgehexgwyumc13oyo0pnkg5fpb30sycj.png)
and each integral here is trivial. We end up with
![\displaystyle\int(4x^2-6)/((x+5)(x-2)(3x-1))\,\mathrm dx=(47)/(56)\ln|x+5|+\frac27\ln|x-2|+\frac5{24}\ln|3x-1|+C](https://img.qammunity.org/2020/formulas/mathematics/college/zsmx60i63732t1nvo02q52bng0beg71kq1.png)
which can be condensed as
![\ln\left|(x+5)^(47/56)(x-2)^(2/7)(3x-1)^(5/24)\right|+C](https://img.qammunity.org/2020/formulas/mathematics/college/c7v2vuaog75kdddmgog02fiu3uokapl9np.png)