200k views
5 votes
Find the given higher-order derivative.

f''(x) = 9- 3/x

f'''(x)=

User Ontrack
by
4.7k points

1 Answer

3 votes

Answer:


f'''(x)=(3)/(x^(2))

Explanation:

We are given with Second-order derivative of function f(x).


f''(x)=9-(3)/(x)

We need to find Third-order derivative of the function f(x).


f''(x)=9-(3)/(x)=9-3x^(-1)

We know that,

f'''(x) = (f''(x))'

So,


f'''(x)=\frac{\mathrm{d}\,f''(x)}{\mathrm{d} x}


f'''(x)=\frac{\mathrm{d}\,(9-3x^(-1))}{\mathrm{d} x}


f'''(x)=\frac{\mathrm{d}\,9}{\mathrm{d} x}-\frac{\mathrm{d}\,3x^(-1)}{\mathrm{d} x}


f'''(x)=0-3\frac{\mathrm{d}\,x^(-1)}{\mathrm{d} x}


f'''(x)=-3(-1)x^(-1-1)


f'''(x)=3x^(-2)


f'''(x)=(3)/(x^(2))

Therefore,
f'''(x)=(3)/(x^(2))

User Dima Shmidt
by
5.3k points