191k views
0 votes
If y = e2x is a solution to y''- 5y' + ky = 0, what is the value of k?

User ViG
by
5.8k points

1 Answer

0 votes

Answer:

The value of k is 6

Explanation:

we need to find the value of k

Given : -
y=e^(2x) is the solution
y''-5y'+ky=0


y=e^(2x) ........(1)

differentiate
y=e^(2x) with respect to 'x'


(dy)/(dx)=(d)/(dx)e^(2x)

Since,
(d)/(dx)e^(x) =e^(x)(d)/(dx)(x)


(dy)/(dx)=e^(2x)(d)/(dx)(2x)


(dy)/(dx)=e^(2x)* 2


(dy)/(dx)=2e^(2x)

so,
y'=2e^(2x) ..........(2)

Again differentiation above with respect to 'x'


(d)/(dx)(dy)/(dx)=(d)/(dx)2e^(2x)


(d^(2)y)/(dx^(2))=2e^(2x)(d)/(dx)(2x)


(d^(2)y)/(dx^(2))=2e^(2x)* 2


(d^(2)y)/(dx^(2))=4e^(2x)

so,
y''=4e^(2x) ........(3)

Now, put the value of
y\ ,y' \ \text{and} \ y'' in
y''-5y'+ky=0


4e^(2x)-5(2e^(2x))+(e^(2x))k=0


4e^(2x)-10e^(2x)+e^(2x)k=0


-6e^(2x)+e^(2x)k=0

add both the sides by
6e^(2x)


e^(2x)k=6e^(2x)

Cancel out the same terms from left and right sides


k=6

Hence, the value of k is 6

User Amrullah Zunzunia
by
4.9k points