Answer:
![x=0.168](https://img.qammunity.org/2020/formulas/mathematics/college/scrbrgjya5m48cjvhxefailtk51971x49h.png)
Explanation:
To solve the equation
you need to apply natural logarithm to both sides of the equation:
![ln(e)^(2x)=ln(1.4)](https://img.qammunity.org/2020/formulas/mathematics/college/vuns98du8sgz2oxceaaxvntjhwfi0eo0bf.png)
According to the logarithms property:
![ln(b)^a=aln(b)](https://img.qammunity.org/2020/formulas/mathematics/college/vuht0nnfk3n524mo6o5macoec9nxs69b30.png)
Then, applying the property, you get:
![(2x)ln(e)=ln(1.4)](https://img.qammunity.org/2020/formulas/mathematics/college/x6tyvfley1b65qz1jluimpd5wyry2jghdm.png)
You need to remember the following:
![ln(e)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/x54djqahe34qp1x1mdc1qkdxtf2q7bnhyk.png)
Therefore:
![2x(1)=ln(1.4)\\\\2x=ln(1.4)](https://img.qammunity.org/2020/formulas/mathematics/college/brgn4095ts7u85a4apcsl9ac4k5ci58cna.png)
And finally, you must divide both sides of the equation by 2:
![(2x)/(2)=(ln(1.4))/(2)\\\\x=0.1682](https://img.qammunity.org/2020/formulas/mathematics/college/yrpatox2r3wuj3hkqmyuc646t3cgo3wktk.png)
Rounded to the nearest thousand:
![x=0.168](https://img.qammunity.org/2020/formulas/mathematics/college/scrbrgjya5m48cjvhxefailtk51971x49h.png)