Step-by-step explanation:
Given:
Va = 36 km/s = 3.6×10⁴ m/s
Vb = 12 km/s = 1.2×10⁴ m/s
T = 137 d = 1.18×10⁷ s
For each star, circumference = velocity * time:
2π R = V T
R = V T / (2π)
So Ra = Va T / (2π), and Rb = Vb T / (2π).
Sum of the forces on Alpha:
Ma Va² / Ra = G Ma Mb / (Ra + Rb)²
Va² / Ra = G Mb / (Ra + Rb)²
Mb = Va² (Ra + Rb)² / (G Ra)
Similarly, sum of the forces on Beta:
Mb Vb² / Rb = G Ma Mb / (Ra + Rb)²
Vb² / Rb = G Ma / (Ra + Rb)²
Ma = Vb² (Ra + Rb)² / (G Rb)
First, calculate Ra and Rb:
Ra = (3.6×10⁴) (1.18×10⁷) / (2π)
Ra = 6.78×10¹⁰
Rb = (1.2×10⁴) (1.18×10⁷) / (2π)
Rb = 2.26×10¹⁰
Therefore, the mass of Alpha is:
Ma = (1.2×10⁴)² (6.78×10¹⁰ + 2.26×10¹⁰)² / (6.67×10⁻¹¹ × 2.26×10¹⁰)
Ma = 7.81×10²⁹ kg
And the mass of Beta is:
Mb = (3.6×10⁴)² (6.78×10¹⁰ + 2.26×10¹⁰)² / (6.67×10⁻¹¹ × 6.78×10¹⁰)
Mb = 2.34×10³⁰ kg