43.9k views
0 votes
a. If cosθ=−45 where θ is in quadrant 3, find sin2θ. b. If cosθ=2√2 where θ is in quadrant 1, find cos2θ. c. If sinθ=817 where θ is in quadrant 2, find tan2θ.

User Booyaches
by
7.5k points

1 Answer

2 votes

Answer:

Part A)
sin(2\theta)=(24)/(25)

Part B)
cos(2\theta)=0

Part C)
tan(2\theta)=-(240)/(161)

Explanation:

Part A) we have
cos(\theta)=-(4)/(5)

θ is in quadrant 3 ----> the sine is negative

Find
sin(2\theta)

we know that


sin(2\theta)=2sin(\theta)cos(\theta)

Remember that


cos^(2) (\theta)+sin^(2) (\theta)=1

substitute


(-(4)/(5))^(2)+sin^(2) (\theta)=1


((16)/(25))+sin^(2) (\theta)=1


sin^(2) (\theta)=1-(16)/(25)


sin^(2) (\theta)=(9)/(25)


sin(\theta)=-(3)/(5) ---> remember that the sine is negative (3 quadrant)

Find
sin(2\theta)

we have


cos(\theta)=-(4)/(5)


sin(\theta)=-(3)/(5)


sin(2\theta)=2sin(\theta)cos(\theta)

substitute


sin(2\theta)=2(-(3)/(5))(-(4)/(5))


sin(2\theta)=(24)/(25)

Part B) we have
cos(\theta)=(√(2))/(2)

θ is in quadrant 1

Find
cos(2\theta)

we know that


cos(2\theta)=2cos^(2) (\theta)-1

substitute


cos(2\theta)=2((√(2))/(2) )^(2)-1


cos(2\theta)=0

Part C) we have
sin(\theta)=(8)/(17)

θ is in quadrant 2 ----> the cosine is negative

Find
tan(2\theta)

we know that


tan(2\theta)=(2tan(\theta))/(1-tan^(2) (\theta))

Remember that


cos^(2) (\theta)+sin^(2) (\theta)=1

substitute


cos^(2) (\theta)+((8)/(17))^(2)=1


cos^(2) (\theta)=1-(64)/(289)


cos^(2) (\theta)=(225)/(289)


cos(\theta)=-(15)/(17)

Find
tan(\theta)


tan(\theta)=(sin(\theta))/(cos(\theta))

substitute


tan(\theta)=((8/17))/((-15/17))


tan(\theta)=-(8)/(15)

Find
tan(2\theta)


tan(2\theta)=(2tan(\theta))/(1-tan^(2) (\theta))

substitute


tan(2\theta)=(2(-(8)/(15)))/(1-(-(8)/(15))^(2))


tan(2\theta)=((-(16)/(15)))/(1-((64)/(225)))


tan(2\theta)=((-(16)/(15)))/(1-(64)/(225))


tan(2\theta)=((-(16)/(15)))/((161)/(225))


tan(2\theta)=-(240)/(161)

User ITChristian
by
7.6k points