ANSWER
Extraneous solution: x=6
Real solution: x=11
Step-by-step explanation
The given expression is
![√(x - 2) + 8 = x](https://img.qammunity.org/2020/formulas/mathematics/college/l4gfg7ti73x3nzihdeg8355kas62fsr7jw.png)
Add -8 to both sides:
![√(x - 2) + 8 + - 8= x + - 8](https://img.qammunity.org/2020/formulas/mathematics/college/te1dpgrp63mdnbevivwcljzgi9quwng3na.png)
![\implies√(x - 2) = x - 8](https://img.qammunity.org/2020/formulas/mathematics/college/9mnc3vghxn0gazp13fogee8do5il3kn1j1.png)
Square both sides.
![\implies(√(x - 2) )^(2) =( x - 8)^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/rgeh21mrrdce7vs2ew72n71tmhobyoj7j5.png)
![x - 2=( x - 8)^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/6t62npb1domzpfzey1c0ccyb5z7q8jgnui.png)
We expand the to get
![x - 2 = {x}^(2) - 16x + 64](https://img.qammunity.org/2020/formulas/mathematics/college/wrsppys948niujifmv48xmw0fwx2ddwlh4.png)
Write in standard quadratic form.
![{x}^(2) - 16x - x + 64 + 2 = 0](https://img.qammunity.org/2020/formulas/mathematics/college/m4g6le5kxupxntv5j2pf2o63aa9lzivrkc.png)
![{x}^(2) - 17x + 66 = 0](https://img.qammunity.org/2020/formulas/mathematics/college/u8cepe2mb602cuqm405mdiblars569w2s5.png)
Factor to get:
![(x - 6)(x - 11) = 0](https://img.qammunity.org/2020/formulas/mathematics/college/7dbcxptucdbnlwm8cehpatx73n0rnywiwb.png)
![x = 6 \: or \: \: x = 11](https://img.qammunity.org/2020/formulas/mathematics/college/t9tidnyhyxvykth9dduiq0on5brzjfq5l9.png)
We check for extraneous solutions by substituting each value of x into the original equation.
When x=6
![√(6 - 2) + 8 = 6](https://img.qammunity.org/2020/formulas/mathematics/college/78i79ffs51u8w9dkywigk6nqx7shkkeq1i.png)
![√(4) + 8 =6](https://img.qammunity.org/2020/formulas/mathematics/college/u5dnv6rd5zgb0kwsa6pknhqobtwbkdeu08.png)
![2 + 8 = 10 \\e8](https://img.qammunity.org/2020/formulas/mathematics/college/nzan1lqaof0vam0r7oxwksn1qzq5y0t2in.png)
Hence x=6 is an extraneous solution.
When x=11
![√(11- 2) + 8 = 11](https://img.qammunity.org/2020/formulas/mathematics/college/qswapqoa3d4jvt6m73n1w0oz46hesfca6p.png)
![√(9) + 8 = 11](https://img.qammunity.org/2020/formulas/mathematics/college/b9uh3jt4kapqvz6szxy8zoay9mm2owhezb.png)
![3 + 8 = 11](https://img.qammunity.org/2020/formulas/mathematics/college/l84r4fc9m2mpgoi0c2dbd8nu1n5vklfm44.png)
This statement is true.
Hence x=11 is the only solution.