Answer:
factors (3p - 5) and (p + 1)
Explanation:
The quadratic formula always "works" when you're looking to factor a quadratic expression or equation. Here, the coefficients are a = 3, b = -2 and c = -5. The discriminant is thus b²-4ac, which here is (-2)²-4(3)(-5), or 4+60, or 64. Because this discriminant is positive, we know that the quadratic has two real, unequal roots. These roots are:
-(-2)±√64 2 ± 8
p = ------------------- = --------------- = 10/6 and -1, or 5/3 and -1.
2(3) 6
These roots correspond to the factors (3p - 5) and (p + 1).