ANSWER
![- (2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zmfkg6ozk7tj7qwdzixswtjfasyeihs2q6.png)
EXPLANATION
The given given equation is
![2y - 3x = 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkzfjtne0q623hk3ygxbs3ze8mn2od2fpl.png)
We need to rewrite this equation in the slope-intercept form:
![y = mx + b](https://img.qammunity.org/2020/formulas/mathematics/high-school/fc4cgm6covys37zv2opmmp9ps4jxyjepvh.png)
We add 3x to both sides.
![2y - 3x + 3x=8 + 3x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jf7xzyzff9t96cyu06szc96q9tnugjm92n.png)
![\implies \: 2y = 3x + 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jlpts4c285h3590b7zuhkwjviexhx1neoy.png)
We divide through by 2 to get,
![y = (3)/(2)x + 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3msll3ss3mkcjx4ajf32d8zi2e6ayr436k.png)
The slope of this line is
![m = (3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xz6kpgyt4cwbp01bnfp1nj8vu6gn43ieq6.png)
Let the slope of the line perpendicular to this line be 'n' .
Then the product of the slopes of two perpendicular lines is always negative 1.
![m * n = - 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h2h3hgjs2f4ejwt5xnfd4eo7krx0kb0wha.png)
![\implies \: (3)/(2) n = - 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x44btmo62a3dr5wsjnika9rhl4e47xgd0q.png)
![\implies \: (2)/(3) * (3)/(2)n = - 1 * (2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i9v9fy0qak5dyfkmjzime1w5s1pu7mxql2.png)
![n = - (2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ucv99llp8kupg4e871qcj58vp3xlpmhmv5.png)
Therefore the slope of the new line is
![- (2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zmfkg6ozk7tj7qwdzixswtjfasyeihs2q6.png)