126k views
3 votes
The following questions A24 - A26 relate to 100 ml of 0.0150 M solution of benzoic acid

(C6H3COOH). Ka(C6H3COOH) = 6.4 x 10^-5.

What is the pH of the solution after the addition of 1 x 10^-3 moles of NaOH? You may assume no volume change to the solution upon addition of the NaOH.

1 Answer

5 votes

Answer:

PH of the weak acid: approximately 2.513.

PH of the buffer solution: approximately 4.495.

Step-by-step explanation:

The Ka value of benzoic acid is much smaller than 1. Benzoic acid will dissociate but only partially when dissolved in water. Construct a RICE table for this process. Let the equilibrium of
\rm H^(+) be
x\; \rm mol\cdot L^(-1). Note that
x \ge 0.


\displaystyle \begin{array}ccccc\textbf{R}&\mathrm{C_6H_5COOH} & \rightleftharpoons & \mathrm{C_6H_5COO^(-)} & + &\mathrm{H^(+)}\\\textbf{I} & 0.015 & & 0 & & 0\\\textbf{C} & -x & & +x & & +x\\\textbf{E} & 0.015-x & & x & & x\end{array}


\displaystyle \frac{[\mathrm{C_6H_5COO^(-)}]\cdot [\mathrm{H^(+)}]}{[\mathrm{C_6H_5COOH}]} = \mathrm{pK}_(a).


\displaystyle (x^(2))/(0.015 - x) = 6.4* 10^(-5).

Solve this quadratic equation for
x:


x^(2)+ 6.4* 10^(-5)\;x - 6.4* 10^(-5)* 0.150 = 0.


\displaystyle x = \frac{-6.4* 10^(-5) \pm \sqrt{(6.4* 10^(-5))^(2) - 4* (- 6.4* 10^(-5)* 0.150)}}{2}.

Take only the non-negative root.
x \approx 0.00306655.


\rm [H^(+)] = 0.00306655\; mol\cdot L^(-1).


\displaystyle \mathrm{pH} = -\log_(10){[\mathrm{H^(+)}]} = 2.513.

Each benzoic acid contains only one carboxyl group
\mathrm{-COOH}. Benzoic acid is thus a monoprotic acid. Each mole of the acid will react with only one mole of
\rm NaOH. The 100 mL solution initially contains
1.50* 10^(-3) moles of benzoic acid. The
1* 10^(-3) moles of
\rm NaOH will neutralize only part of the acid. The solution will eventually contain
1* 10^(-3) moles of
\mathrm{C_6H_5COO^(-)} (from the salt
\mathrm{C_6H_5COONa}) and
0.50* 10^(-3) moles of
\mathrm{C_6H_3COOH}.

Both the acid
\mathrm{C_6H_5COOH} and the conjugate base of the acid
\mathrm{C_6H_5COO^(-)} exist in large amounts in the solution. Apply the Henderson-Hasselbalch equation for weak acid buffers to find the pH of this buffer solution.


\mathrm{pK}_(a) = -\log_(10){\mathrm{K}_(a)} \approx 4.19382 for benzoic acid.


\begin{aligned}\mathrm{pH} &= \mathrm{pK}_(a) + \log{\frac{{[\text{Conjugate Base}]}}{[\text{Weak Acid}]}} \\ &= \mathrm{pK}_(a) + \log{\frac{{[\mathrm{C_6H_5COO^(-)}]}}{[\mathrm{C_6H_5COOH}]}}\\ &= 4.19382 + \log{(0.01)/(0.005)}\\ &\approx 4.495 \end{aligned}.

User Aloo
by
5.1k points