76.2k views
0 votes
If


log_(5)(3) = a
and

log_(5)(4)= b
then

log_(15)(2)
is?
a)2b/a+1

b)a+b/ab

c)2b-a/2b

d)b/2a+2

e)2a+2/b



User Koyae
by
4.8k points

1 Answer

4 votes


\bf \log_5(3)=a\qquad \qquad \log_5(4)=b\ \\\\\\ \log_5(4)=b\implies \log_5(2^2)=b\implies 2\log_5(2)=b\implies \log_5(2)=\cfrac{b}{2} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log_(15)(2)\implies \stackrel{\textit{change of base rule}}{\cfrac{\log_5(2)}{\log_5(15)}}\implies \cfrac{~~(b)/(2)~~}{\log_5(3\cdot 5)}\implies \cfrac{~~(b)/(2)~~}{\log_5(3)+\log_5(5)} \\\\\\ \cfrac{~~(b)/(2)~~}{a+1}\implies \cfrac{b}{2}\cdot \cfrac{1}{a+1}\implies \cfrac{b}{2a+2}

User NavaRajan
by
6.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.