69.1k views
5 votes
Which linear function has the same slope as the one that is represented by the table?

Which linear function has the same slope as the one that is represented by the table-example-1
Which linear function has the same slope as the one that is represented by the table-example-1
Which linear function has the same slope as the one that is represented by the table-example-2
User Krowe
by
5.7k points

2 Answers

3 votes

Answer:

-1/5x +1/2

ghiybifvcodtgy78

User Indria
by
5.6k points
2 votes

Answer:

b.
y=-(1)/(5)x+(1)/(2)

Explanation:

We have to find the linear which has same slope as the slope represented by the table.

Slope formula :m=
(y_2-y_1)/(x_2-x_1)

By using the formula and substitute
y_1=(1)/(5),y_2=(7)/(50),x_1=-(1)/(2),x_2=-(1)/(5)

Slope=
((7)/(50)-(1)/(5))/(-(1)/(5)+(1)/(2))

Slope=
(-(3)/(50))/((3)/(10))

Slope=
-(3)/(50)* (10)/(3)

Slope=
-(1)/(5)

a.
y=-(1)/(2)x+(1)/(10)

Compare with


y=mx+b

we get m=
-(1)/(2)

Slope=
-(1)/(2)

Hence, option A is false.

b.
y=-(1)/(5)x+(1)/(2)

Slope of given function=
-(1)/(5)

It is true.

c.
y=(1)/(5)x-(1)/(2)

Slope of given function=
(1)/(5)

Hence, option is false.

d.
y=(1)/(2)x-(1)/(10)

Slope of given function=
(1)/(2)

Hence, option is false.

User Pepoluan
by
5.1k points