Answer:
![\displaystyle y' = -4e^(-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uj7lz6tggyx7xgui97pp4lkdpulasuye2y.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/66xycb9zlmvgpjxd6pken7kl0vwhdmg9nq.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ng1b0frayturcauvihrqe3qtb65llra87c.png)
Step-by-step explanation:
Step 1: Define
Identify
![\displaystyle y = e^(-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o1kdooffalzswmib41aou8dlm07xzxz0jk.png)
Step 2: Differentiate
- Exponential Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = e^(-4x)(-4x)'](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k9wz39zdstz6bksk5fprvtlkxuyh8glpod.png)
- Basic Power Rule [Derivative Property - Multiplied Constant]:
![\displaystyle y' = -4e^(-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uj7lz6tggyx7xgui97pp4lkdpulasuye2y.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation