Answer:
A) 1/77; B) 12/77; C) 4/11
Explanation:
A) There are a total of 22 marbles. 6 of them are red.
On the first draw, the probability of getting a red marble is 6/22.
On the second draw, there's one less red marble and one less marble total, so the probability of getting another red marble is 5/21.
Similarly, on the third draw, the probability of getting a red marble is 4/20.
So the probability that all three draws are red marbles is:
P = (6/22) (5/21) (4/20)
P = 1/77
Another way this can be calculated is with combinations:
P = (ways to choose 3 red marbles from 6) / (ways to choose 3 marbles from 22)
P = ₆C₃ / ₂₂C₃
P = 20 / 1540
P = 1/77
B) The same logic can be repeated here. Using the first method, if the first two selection are red:
P = (6/22) (5/21) (16/20) = 4/77
If the first and third are red:
P = (6/22) (16/21) (5/20) = 4/77
If the last two are red:
P = (16/22) (6/21) (5/20) = 4/77
So the total probability is:
P = 4/77 + 4/77 + 4/77
P = 12/77
Using the second method:
P = (ways to choose 2 red from 6) × (ways to choose 1 non-red from 16) / (ways to choose 3 from 22)
P = ₆C₂ ₁₆C₁ / ₂₂C₃
P = 15 × 16 / 1540
P = 12/77
C)
Same logic:
P = (16/22) (15/21) (14/20)
P = 4/11
Or:
P = ₁₆C₃ / ₂₂C₃
P = 560 / 1540
P = 4/11