Answer:
These are the five remaining trigonometric functions:
- tanθ = - 7/6
- secθ = (√85) / 6
- cosθ = 6(√85) / 85
- sinθ = - 7(√85) / 85
- cscθ = - (√85)/7
Step-by-step explanation:
Quadrant IV corresponds to angle interval 270° < θ < 360.
In this quadrant the signs of the six trigonometric functions are:
- sine and cosecant: negative
- cosine and secant: positive
- tangent and cotangent: negative
The expected values of the five remaining trigonometric functions of θ are:
1) Tangent:
- tan θ = 1 / cot (θ) = 1 / [ -6/7] = - 7/6
2) Secant
- sec²θ = 1 + tan²θ = 1 + (-7/6)² = 1 + 49/36 = 85/36
sec θ = ± (√85)/ 6
Choose positive, because secant is positive in Quadrant IV.
sec θ = (√85) / 6
3) Cosine
- cosθ = 1 / secθ = 6 / (√85) = 6 (√85) / 85
4) Sine
- sin²θ + cos²θ = 1 ⇒ sin²θ = 1 - cos²θ = 1 - [6(√85) / 85] ² =
sin²θ = 1 - 36×85/(85)² = 1- 36/85 = 49/85
sinθ = ± 7 / (√85) = ± 7(√85)/85
Choose negative sign, because it is Quadrant IV.
sinθ = - 7 (√85) / 85
5) Cosecant
- cscθ = 1 / sinθ = - 85 / (7√85) = - (√85) / 7